Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens.
نویسندگان
چکیده
Saccharomyces cerevisiae (dry baker's yeast) and Pseudomonas fluorescens were used to convert trans-ferulic acid into 4-hydroxy-3-methoxystyrene in 96 and 89% yields, respectively. The metabolites were isolated by solid-phase extraction and analyzed by thin-layer chromatography and high-performance liquid chromatography. The identities of the metabolites were determined by 1H- and 13C-nuclear magnetic resonance spectroscopy and by mass spectrometry. The mechanism of the decarboxylation of ferulic acid was investigated by measuring the degree and position of deuterium incorporated into the styrene derivative from D2O by mass spectrometry and by both proton and deuterium nuclear magnetic resonance spectroscopies. Resting cells of baker's yeast reduced ferulic acid to 4-hydroxy-3-methoxyphenylpropionic acid in 54% yield when incubations were under an argon atmosphere.
منابع مشابه
ALD5, PAD1, ATF1 and ATF2 facilitate the catabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid in Saccharomyces cerevisiae
The ability of Saccharomyces cerevisiae to catabolize phenolic compounds remains to be fully elucidated. Conversion of coniferyl aldehyde, ferulic acid and p-coumaric acid by S. cerevisiae under aerobic conditions was previously reported. A conversion pathway was also proposed. In the present study, possible enzymes involved in the reported conversion were investigated. Aldehyde dehydrogenase A...
متن کاملBioconversion of ferulic acid obtained from wheat bran into vanillin
In this work the possibility of producing vanillin through microbial bioconversion from ferulic acid obtained from the enzymatic hydrolysis of wheat bran has been explored. The biocatalyst employed was Escherichia coli JM109/pBB1, a recombinant strain containing the genes from Pseudomonas fluorescens BF13 for the transformation of ferulic acid into vanillin. The substrate of the bioconversion, ...
متن کاملVanillin production using metabolically engineered Escherichia coli under non-growing conditions
BACKGROUND Vanillin is one of the most important aromatic flavour compounds used in the food and cosmetic industries. Natural vanillin is extracted from vanilla beans and is relatively expensive. Moreover, the consumer demand for natural vanillin highly exceeds the amount of vanillin extracted by plant sources. This has led to the investigation of other routes to obtain this flavour such as the...
متن کاملCatabolism of coniferyl aldehyde, ferulic acid and p-coumaric acid by Saccharomyces cerevisiae yields less toxic products
BACKGROUND Lignocellulosic substrates and pulping process streams are of increasing relevance to biorefineries for second generation biofuels and biochemical production. They are known to be rich in sugars and inhibitors such as phenolic compounds, organic acids and furaldehydes. Phenolic compounds are a group of aromatic compounds known to be inhibitory to fermentative organisms. It is known t...
متن کاملInhibitory Effect of Supernatant and Lysate of Saccharomyces cerevisiae on Expression of exoA Gene of Pseudomonas aeruginosa
Background and Aim: Pseudomonas aeruginosa is an important ubiquitous and especially common pathogen in the hospital. Exotoxin A that encoded by exoA gene has a role in pathogenesis of this bacterium. Today, probiotics are widely used in the treatment and prevention of diseases. The present study aimed to study the Saccharomyces cerevisiae S3 effect on the expression of exoA gene. Materials an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 59 7 شماره
صفحات -
تاریخ انتشار 1993